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This paper presents a control architecture for an aerial manipulator operating in indoor
environments. The objective is to provide a viable solution to the growing need for indoor
assistive technology. The study tries to address the problem of payload pick-and-place with
unknown mass. The control structure consists of i) a baseline pitch angle tracking controller
that provides satisfactory performance for the quadrotor without a payload; ii) an adaptive
augmentation that compensates for the disturbance in the rotational dynamics due to the un-
known payload; iii) a horizontal position tracking controller that generates the pitch angle
command; iv) a baseline vertical position tracking controller; and v) another adaptive aug-
mentation controller that compensates for the disturbance in the vertical motion from the
pick-and-place of the unknown payload. Since the robotic manipulator operates in the vertical
plane of symmetry of the quadrotor, the control design is considered for the motion only in this
plane. The controller is verified in a simulation environment.

I. Introduction

Aerial robots hold a great promise to help older population in their daily activities and facilitate the “aging in
place” [1–3]. Among several types of daily activities, study shows that fetching objects from the floor or another

room is one of those that are preferred to be completed by robots [4]. In [5] an aerial vehicle appropriate for indoor use
was designed and augmented with a manipulator so that it can pick up common household items such as medicine
bottles, reading glasses, and cell phones, for people with reduced mobility. The vehicle is shown in Fig. 1. This type of
small aerial vehicles are agile and have the advantage in completing this sort of task over ground vehicles, which are not
capable of climbing stairs or reaching for items at high altitudes. However, the control design poses a great challenge
due to uncertainties, such as the objects that it picks up, and the coupling between the manipulator and the quadrotor. In
[5], an adaptive control structure was designed to compensate for the torque due to an unknown payload, where only
the rotational motion was considered, while the influence of the unknown payload on the translational motion of the
vehicle during the pick-and-place mission was not addressed. In this study, control laws are designed to achieve stable
pick-and-place missions.

During the past decade, aerial manipulators have attracted wide attention of researchers. The study in [6] presents
design of several light-weight, low-complexity grippers that allow UAVs to pick up and transport a wide range of
payloads; however, the vehicle is required to fly directly over the top of the payload. An algorithm for aerial grasping of
moving targets is presented in [7], where two classes of grasping maneuvers are discussed, and a planning strategy
based on differential flatness is proposed. However, the single link design of this aerial manipulator imposes restrictions
on the work space, and the payload cannot be moved close to the center of mass of the vehicle, creating challenges
for navigation through narrow passages. In [8], a quadrotor with a 2-link manipulator is introduced, enabling the
end-effector to achieve arbitrary orientation and overcome the drawbacks with grippers fixed to a quadrotor. A controller
based on feedback linearization is designed for trajectory tracking. References [9] and [10] present a design, where
a quadrotor MAV is equipped with an actuated appendage to enable grasping and retrieval of objects at high speeds,
and differential flatness property is used in dynamic trajectory planning. A Lyapunov-based model reference adaptive
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Fig. 1 An aerial manipulator designed as an indoor assisting system

control design for aerial manipulation is presented in [11] for an aerial vehicle with dual manipulators. A control
system based on feedback linearization and PD control for an aerial manipulator is proposed in [12], taking into account
the mutual reactive influence between the robotic manipulator and the UAV. In [13], a six degree of freedom parallel
manipulator that can robustly maintain precise end-effector positioning in the presence of perturbations is designed. For
unknown payload, [14] presents an on-line estimator to evaluate the unknown payload, and a passivity-based control
algorithm is designed for the system. The study in [15] introduces a nonlinear model predictive control methodology
to achieve optimized performance in pick-and-place tasks of aerial manipulators, by employing a sequential Newton
method for unconstrained optimal control and a high-frequency low-level controller for optimal trajectory tracking.
On-board vision system is used for object finding. In [16], a quadcopter equipped with a Delta-type parallel manipulator
was studied, and an L1 adaptive controller was designed to augment the baseline control law for rotational motion.

In this paper, we will discuss the control design for vehicle stabilization during object manipulations. Due to the
coupling between the robotic manipulator and the quadrotor, operations of the manipulator will influence the system
dynamic properties remarkably, such as the center of mass and moment of inertia, among others. To reduce its effect, in
this study it is assumed that the robot arm keeps its configuration during the pick-and-place mission. In addition to
the robot arm, the uncertainty caused by various objects to be picked up is also considered in the system dynamics.
To stabilize the whole system and guarantee satisfactory manipulation performance, a pitch angle controller will be
designed as the inner-loop of the horizontal position controller. A vertical position controller will also be designed to
follow the vertical position command. To compensate for the disturbance induced by the robotic arm and the unknown
payload, two L1 adaptive controllers are proposed as augmentation to the baseline controllers, one for the rotational
motion and the other for the vertical translational motion. L1 adaptive controllers have been implemented in a large
number of flight tests, involving various uncertainties, including mass change, component failures, and disturbances
[17–21]. Since during the process of pick-and-place, the vehicle’s motion is mainly in the vertical plane of symmetry,
the modeling work and control design presented here will be carried out only considering generalized coordinates
associated with this plane. Control design will be developed and tested in a simulation environment.

This paper is organized as follows. Section II presents the mathematical model of the aerial manipulator in the
vertical plane of symmetry. In Section III the control design of the system is discussed. Simulation results are presented
in Section IV. Finally Section V concludes the paper.

II. Mathematical Model of the Aerial Manipulator
In this section, the mathematical model of the aerial manipulator will be derived for control design purposes. During

the process of object pick-and-place, the motion takes place in the vertical plane of symmetry of the vehicle. Hence the
equations of motion of the system in this plane will be explored using Lagrangian dynamics. Several coordinate systems
are defined to facilitate the modeling process of the system, and they are shown in Fig. 2a. The world frame {oe} is an
inertial frame, and the body frame {o1} is fixed at the center of mass of the quadrotor. Assume that the joint (joint 1)
between the quadrotor and link 1 of the manipulator is located at the center of mass of the quadrotor, and the joint
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rotates about y1-axis. The frame {o2} is fixed at the end of link 1 with z2-axis aligned with link 1, and joint 2 rotates
about y2-axis. The frame {o3} is fixed at the end of link 2 with z3-axis along link 2. A diagram of the system with
coordinate frames in the plane of symmetry is shown in Fig. 2b. Note that the center of mass of the payload coincides
with the origin of {o3}.

(a) Coordinate systems (b) Diagram of the system in the plane of symmetry

Fig. 2 The aerial manipulator and coordinate systems used in modeling

Choose the following generalized coordinates q̄ =
[
xq, zq, θ, α, β

]>
, where xq and zq are the coordinates of the

center of mass of the quadrotor in the inertial frame {oe}, θ is the pitch angle of the quadrotor, and α and β are the two
joint angles as shown in Fig. 2b. With this set of generalized coordinates, the generalized force will be

Q(q̄) =



−F sin θ
−F cos θ

τ

τ1

τ2



,

where F and τ are the total force and torque generated by the propellers of the quadrotor, and τ1 and τ2 are the joint
torques. The kinetic energy of the system, carrying a payload of mass mp and having moment of inertia Iyyp about
y3-axis, can be written as

T =
1
2

m1( ẋ2
q + ż2

q) +
1
2

m2
{
ẋ2
q + ż2

q + l2
c1(θ̇ + α̇)2 + 2lc1

[
cos(θ + α) ẋq − sin(θ + α) żq

]
(θ̇ + α̇)

}

+
1
2

m3
{
ẋ2
q + ż2

q + l2
1 (θ̇ + α̇)2 + l2

c2(θ̇ + α̇ + β̇)2 + 2l1
[
cos(θ + α) ẋq − sin(θ + α) żq

]
(θ̇ + α̇)

+2lc2
[
cos(θ + α + β) ẋq − sin(θ + α + β) żq + l1 cos(β)(θ̇ + α̇)

]
(θ̇ + α̇ + β̇)

}

+
1
2

mp

{
ẋ2
q + ż2

q + l2
1 (θ̇ + α̇)2 + l2

2 (θ̇ + α̇ + β̇)2 + 2l1
[
cos(θ + α) ẋq − sin(θ + α) żq

]
(θ̇ + α̇)

+2l2
[
cos(θ + α + β) ẋq − sin(θ + α + β) żq + l1 cos(β)(θ̇ + α̇)

]
(θ̇ + α̇ + β̇)

}

+
1
2

Iyy1θ̇
2 +

1
2

Iyy2(θ̇ + α̇)2 +
1
2

Iyy3(θ̇ + α̇ + β̇)2 +
1
2

Iyyp (θ̇ + α̇ + β̇)2,

where m1, m2, and m3 denote the mass of the quadrotor (including servomotors and batteries), link 1, and link 2 of the
manipulator respectively; l1 and l2 represent the lengths of link 1 and 2 of the manipulator; lci is the distance from the
center of mass of the link i to the joint i of the manipulator for i = 1, 2; Iyy1, Iyy2, and Iyy3 are the moments of inertia
about the center of mass of the quadrotor, link 1, and link 2 respectively.

The potential energy of the system can be written as

V = − m1gzq − m2g
[
zq + lc1 cos(θ + α)

]
− m3g

[
zq + l1 cos(θ + α) + lc2 cos(θ + α + β)

]

− mpg
[
zq + l1 cos(θ + α) + l2 cos(θ + α + β)

]
.
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Then the Lagrangian is L = T − V . Using the Lagrangian dynamic equations

d
dt

(
∂L
∂ ˙̄qi

)
−
∂L
∂q̄i
= Qi (q̄), i = 1, 2, 3, 4, 5,

we obtain the following equations of motion

M (q̄) ¨̄q + C( ˙̄q, q̄) ˙̄q + G(q̄) = Q(q̄), (1)

where the matrices M (q̄), C(q̄, ˙̄q), and G(q̄) are defined in Eqs. (32)–(33) in Appendix.
In this paper, it is assumed that the configuration of the robot arm is fixed during the flight and object manipulation,

and the actuators controlling the joint angle α and β will keep the joint angles unchanged. Hence, we have

α̈ = α̇ = 0,
β̈ = β̇ = 0.

With this assumption, the reduced model of the system can be written as

Mr (q̄) ¨̄q + Cr ( ˙̄q, q̄) ˙̄q + Gr (q̄) = Qr (q̄), (2)

where the new coordinates q̄ =
[
xq, zq, θ

]>
, and the matrices Mr (q̄), Cr ( ˙̄q, q̄), Gr (q̄), and Qr (q̄) are defined in

Eqs. (3)–(6). In the following section of control design, this reduced model will be used instead of the model in Eq. (1).

Mr (q̄) =



m1 + m2 + m3 + mp 0

(m2lc1 + m3l1) cos(θ + α)

+ m3lc2 cos(θ + α + β)

+ mp l1 cos(θ + α)

+ mp l2 cos(θ + α + β)

0 m1 + m2 + m3 + mp

− (m2lc1 + m3l1) sin(θ + α)

− m3lc2 sin(θ + α + β)

− mp l1 sin(θ + α)

− mp l2 sin(θ + α + β)

(m2lc1 + m3l1) cos(θ + α)

+ m3lc2 cos(θ + α + β)

+ mp l1 cos(θ + α)

+ mp l2 cos(θ + α + β)

− (m2lc1 + m3l1) sin(θ + α)

− m3lc2 sin(θ + α + β)

− mp l1 sin(θ + α)

− mp l2 sin(θ + α + β)

Iyy1 + Iyy2 + Iyy3 + Iyyp + m2l2
c1

+ m3(l2
1 + l2

c2 + 2l1lc2 cos(β))

+ mp (l2
1 + l2

2 + 2l1l2 cos(β))



, (3)

Cr ( ˙̄q, q̄) =



0 0
− θ̇

[
(m2lc1 + m3l1) sin(θ + α) + m3lc2 sin(θ + α + β)

]
− θ̇

[
mp l1 sin(θ + α) + mp l2 sin(θ + α + β)

]

0 0
− θ̇

[
(m2lc1 + m3l1) cos(θ + α) + m3lc2 cos(θ + α + β)

]
− θ̇

[
mp l1 cos(θ + α) + mp l2 cos(θ + α + β)

]

0 0 0



, (4)

Gr (q̄) =



0

−(m1 + m2 + m3 + mp)g

(m2lc1 + m3l1 + mpl1)g sin(θ + α)
+ (m3lc2 + mpl2)g sin(θ + α + β)



, (5)

Qr (q̄) =



−F sin θ
−F cos θ

τ



. (6)
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III. Control Law Design
In this section, the design of control law is discussed. To facilitate the control law design and testing, a Simulink

model is built to model the dynamics of the quadrotor and the manipulator. All control designs are tested in this
environment. Before we present the general control structure and details of the control design, the mathematical model
in Eq. (2) is processed first, and some simplifying assumptions are introduced.

A. Model Simplification and Analysis
In this part, the model presented in Eq. (2) is simplified based on some practical assumptions to facilitate the control

design. Since the mass of the picked-up payload is unknown, all three matrices Mr (q̄), Cr ( ˙̄q, q̄), and Gr (q̄) can be
decomposed into two matrices – one contains all the known variables and the other has unknown mp . Let the superscript
k denote known, and superscript u denote unknown. We can write

Mr (q̄) = Mk
r (q̄) + Mu

r (q̄),

Cr ( ˙̄q, q̄) = Ck
r ( ˙̄q, q̄) + Cu

r ( ˙̄q, q̄),

Gr (q̄) = Gk
r (q̄) + Gu

r (q̄),

(7)

where
Mk

r (q̄) = Mr (q̄) |mp=0 ,

Ck
r ( ˙̄q, q̄) = Cr ( ˙̄q, q̄)���mp=0

,

Gk
r (q̄) = Gr (q̄) |mp=0 ,

Mu
r (q̄) = Mr (q̄) − Mk

r (q̄),

Cu
r ( ˙̄q, q̄) = Cr ( ˙̄q, q̄) − Ck

r ( ˙̄q, q̄),

Gu
r (q̄) = Gu

r (q̄) − Gk
r (q̄).

The matrices Mu
r (q̄), Cu

r ( ˙̄q, q̄), and Gu
r (q̄) can be written as

Mu
r (q̄) =



mp 0
mpl1 cos(θ + α)
+mpl2 cos(θ + α + β)

0 mp

− mpl1 sin(θ + α)
− mpl2 sin(θ + α + β)

mpl1 cos(θ + α)
+mpl2 cos(θ + α + β)

− mpl1 sin(θ + α)
− mpl2 sin(θ + α + β)

Iyyp
+mp (l2

1 + l2
2 + 2l1l2 cos(β))



, (8)

Cu
r ( ˙̄q, q̄) =



0 0 −θ̇mp
[
l1 sin(θ + α) + l2 sin(θ + α + β)

]
0 0 −θ̇mp

[
l1 cos(θ + α) + l2 cos(θ + α + β)

]
0 0 0



, (9)

Gr (q̄) =



0

−mpg

mpl1g sin(θ + α) + mpl2g sin(θ + α + β)



. (10)

Note that when mp = 0, the three matrices become zero. If we assume that the object is a regular cylinder, then Iyyp is
proportional to mp , and mp can be factored out in all above three matrices. With those matrices defined in Eq. (7), the
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dynamic equations of the system in Eq. (2) can be written as
[
Mk

r (q̄) + Mu
r (q̄)

]
¨̄q +

[
Ck
r ( ˙̄q, q̄) + Cu

r ( ˙̄q, q̄)
]

˙̄q +
[
Gk

r (q̄) + Gu
r (q̄)

]
= Qr (q̄). (11)

Since Mr (q̄) is always symmetric and invertible, we obtain

¨̄q =
[
Mk

r (q̄) + Mu
r (q̄)

]−1 (
−

[
Ck
r ( ˙̄q, q̄) + Cu

r ( ˙̄q, q̄)
]

˙̄q −
[
Gk

r (q̄) + Gu
r (q̄)

]
+Qr (q̄)

)
. (12)

Based on the matrix inversion equality in [22], the inversion of the sum of two matrices can be represented by

[
Mk

r (q̄) + Mu
r (q̄)

]−1
=

[
Mk

r (q̄)
]−1
−

[
Mk

r (q̄)
]−1 (
I + Mu

r (q̄)
[
Mk

r (q̄)
]−1)−1

Mu
r (q̄)

[
Mk

r (q̄)
]−1︸                                                                        ︷︷                                                                        ︸

=:Mu2
r (q̄)

.

Let the second term in the above equation be denoted by Mu2
r (q̄), which can be seen as a correction to the inverse of

Mk
r (q̄) due to Mu

r (q̄) induced by the unknown payload mp . Then we can write
[
Mk

r (q̄) + Mu
r (q̄)

]−1
=

[
Mk

r (q̄)
]−1
− Mu2

r (q̄).

Note that if mp = 0, then Mu
r (q) = 0, and hence Mu2

r (q̄) = 0. With this, the equation of motion in Eq. (12) can be
written as

¨̄q =
( [

Mk
r (q̄)

]−1
− Mu2

r (q̄)
) (
−

[
Ck
r ( ˙̄q, q̄) + Cu

r ( ˙̄q, q̄)
]

˙̄q −
[
Gk

r (q̄) + Gu
r (q̄)

]
+Qr (q̄)

)
= −

[
Mk

r (q̄)
]−1 (

Ck
r ( ˙̄q, q̄) ˙̄q + Gk

r (q̄) +Qr (q̄)
)
−W (mp, ˙̄q, q̄).

(13)

In above equation, the first term is known, and the second term is unknown due to the unknown payload mp. Also,
W (mp, ˙̄q, q̄) = 0, if mp = 0. In the following control design process, the influence of the unknown payload will not be
considered in the baseline control law design process. Later, adaptive augmentations will be introduced to compensate
for the disturbance caused by the payload. Hence, assuming that mp = 0, the system equations of motion can be
simplified to

¨̄q = −
[
Mk

r (q̄)
]−1 (

Ck
r ( ˙̄q, q̄) ˙̄q + Gk

r (q̄) +Qr (q̄)
)
. (14)

Let vx = ẋq, vz = żq, q = θ̇, and x = [xq, zq, θ, vx, vz, q]>. Let the control input be u = [F, τ]>. The system
equations of motion in Eq. (14) can be written in the state-space form as



ẋq
żq
θ̇

v̇x

v̇z

q̇



=



vx

vz

q

−
[
Mk

r (x)
]−1 (

Ck
r (x) ˙̄q + Gk

r (x) +Qr (q̄)
)



, x(0) = x0. (15)

The vector field defined by the above presented equations of motion is nonlinear. Based on Eq. (14), the equilibrium
point can be calculated as ¨̄q = ˙̄q = 0, and hence we have

ẍq = z̈q = θ̈ = ẋq = żq = θ̇ = vx = vz = q = θ = 0.

This implies that xe = (xq, zq, 0, 0, 0, 0) is an equilibrium for any given xq, zq ∈ R. The control input at the
equilibrium is ue = (Fe, τe) with

Fe = (m1 + m2 + m3)g,
τe = (m2lc1 + m3l1)g sin(α) + m3lc2g sin(α + β).

(16)

For this vehicle, it is assumed that there will be no aggressive maneuvering, and the vehicle will be operating close
to this equilibrium point. Hence the nonlinear dynamics in Eq. (14) can be linearized at the equilibrium for control
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design purposes. Let f (x) : R6 → R6 represent the vector field defined by Eq. (15). Then the linearized system can be
obtained as

ẋ = Ax + Bu, x(0) = 0, (17)

where the system matrix and the input matrix are computed by

A =
[
∂ f (x)
∂x

]

x=xe, u=ue

, B =
[
∂ f (x)
∂u

]

x=xe, u=ue

.

Symbolic calculations reveal that matrices A and B have the following forms:

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −g 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



, B =



0 0
0 0
0 0

B41 B42

B51 B52

B61 B62



,

and the matrix B is a function of the angles α and β. However, since the mass of link 1 and 2 is much smaller than
the mass of the vehicle, the change of matrix B due to different manipulator configurations is small. Figure 3 shows
the plots of nonzero elements of matrix B for different α and β such that α + β = π/2, in which case, link 2 of the
manipulator is always parallel to the x1-axis of the body frame. Those plots also imply that the input F is most efficient
as the control signal for ż, and the input τ is capable of controlling θ̇ efficiently, which is typical for a quadrotor.

0 0.5 1 1.5
0

1

2

3
10
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0 0.5 1 1.5
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0.1

0.2

0.3

0.4

0.5

0 0.5 1 1.5

 [rad]

35.6

35.8

36

36.2

Fig. 3 Variation of nonzero elements in B matrix as α changes

Based on above analysis, the system can be decoupled into the following three subsystems and control laws will be
designed for these three systems independently.

• Subsystem 1), horizontal translational dynamics:

ẋq = vx, xq (0) = xq0,

v̇x = −gθ, vx (0) = vx0.
(18)
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• Subsystem 2), vertical translational dynamics:

żq = vz, zq (0) = zq0,

v̇z = B51F, vz (0) = vz0.
(19)

• Subsystem 3), rotational dynamics:
θ̇ = q, θ(0) = θ0,

q̇ = B62τ, q(0) = q0.
(20)

In the following, the influence of the unknown payload mp on system equations will be explored to better understand the
system. After adding an unknown payload, the overall mass and moment of inertia of the vehicle increase, leading
to smaller magnitude of the element B51 and B62 in matrix B. To illustrate the effect of a payload, in Fig. 4 nonzero
elements of matrix B are plotted for payloads of different mass. As the mass increases, the magnitudes of B51 and B62
decrease. In control law design, this uncertainty caused by the unknown payload has to be addressed carefully.

0 0.5 1 1.5
0
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0.03

0.04
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-0.5

0

0 0.5 1 1.5
0

0.5

1

1.5

2

0 0.5 1 1.5

 [rad]

30

32

34

36

38

Fig. 4 Variation of nonzero elements in B matrix as α and mp change

First, control laws will be designed for the rotational dynamics to achieve satisfactory pitch angle tracking
performance. After that, a horizontal position tracking control law will be designed. Finally, the vertical position
tracking control law will be developed. In the first and the last steps, a baseline control law will be designed first, based
on which an adaptive controller will be augmented to compensate for the unknown payload and unknown configuration
of the manipulator. The design configuration is chosen as α = β = π/4 with mp = 0.

B. General Control Structure
The control architecture consists of two position tracking controllers, a horizontal position tracking controller, and a

vertical position tracking controller, which receive commands from either a vision-based pick-and-place controller or a
trajectory generation module that generates position commands. The horizontal position tracking controller generates a
pitch angle command for a pitch angle controller, which consists of a baseline pitch angle controller and an L1 adaptive
augmentation. The vertical position tracking controller consists of a baseline position tracking controller and another L1
adaptive augmentation, which compensates for the unknown payload during pick-and-place. Figure 5 shows the general
control structure of the system. In [5], a computed torque feedforward control law was developed to compensate for the
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influence of the robot arm. However, the simulation results therein indicate that with the L1 adaptive augmentation, the
feedforward control law is not necessary. Hence, in this study, the feedforward controller is not considered.

Fig. 5 General control structure

C. Horizontal Position Controller
In this subsection, the horizontal position controller will be developed. First, the baseline pitch angle controller

design will be explained, followed by an adaptive augmentation. Then we present the horizontal position controller
based on the pitch angle controller. The models used in this part are Subsystem 1) in Eq. (18) and Subsystem 3) in
Eq. (20).

1. Baseline Pitch Angle Controller
The baseline pitch angle (θ(t)) controller uses a PD control structure, which receives pitch angle command θc (t)

from the horizontal position tracking control block. The control input τb (t) is given by

τb (t) = Kθ
p (θc (t) − θ(t)) + Kθ

dq(t), (21)

where Kθ
p and Kθ

d
∈ R are control gains.

2. L1 Adaptive Augmentation for the Pitch Angle Controller
Similar to our previous study in [5], to compensate for the uncertainty introduced by the unknown payload mp and

different configurations of the manipulator arm an L1 adaptive control augmentation is developed with a piecewise
constant adaptation law for the rotational motion of the vehicle.

The rotational dynamics of the vehicle with the baseline pitch angle control law in Eq. (21) and the L1 adaptive
augmentation uθa (t) can be written as

ẋθ (t) = Aθmxθ (t) + Bθr rθ (t) + Bθm
(
uθa (t) + f θ1 (t, xθ )

)
+ Bθum f θ2 (t, xθ ), xθ (0) = xθ0,

yθ (t) = Cθ
mxθ (t),

(22)

where xθ (t) =
[
θ(t), q(t)

]> is the vector of the measured system states, rθ (t) = θc (t) is the reference pitch
angle command, f θ1 (t, xθ ) : R × R2 → R is a nonlinear function representing the matched uncertainty, which
contains information on the unknown payload, the configuration of the manipulator, and the linearization residual,
f θ2 (t, xθ ) : R × R2 → R is a nonlinear function representing additional modeling uncertainty. Aθm ∈ R

2×2 is a known
Hurwitz matrix defining the desired system rotational dynamics, Bθr ∈ R

2×1 is the known command matrix, Bθm ∈ R
2×1

is the known input matrix, Cθ
m ∈ R

1×2 is a known vector, and Bθum ∈ R
2×1 is a matrix such that Bθ>m Bθum = 0 and

[Bθm Bθum] has full rank. The product Bθum f θ2 (t, xθ ) represents the unmatched uncertainty. The matrices Aθm, Bθr , and
Bθm are written as follows

Aθm =


0 1
−B̄62Kθ

p B̄62Kθ
d


, Bθr =



0
B̄62Kθ

p


, Bθm =



0
1


,
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where B̄62 is the nominal value of the element B62 for the design configuration α = β = π/4 and mp = 0. For the
system given in Eq. (22), the following L1 adaptive controller is considered.

State Predictor: The state predictor takes the same structure as the system in Eq. (22) and is given by

˙̂xθ (t) = Aθm x̂θ (t) + Bθr rθ (t) + Bθm
(
uθa (t) + σ̂θ1 (t)

)
+ Bθumσ̂

θ
2 (t), x̂θ (0) = xθ0, (23)

where x̂θ (t) is the observer state, σ̂θ1 (t) ∈ R and σ̂θ2 (t) ∈ R are the estimates of the nonlinear function f θ1 (·) and f θ2 (·)
respectively.

Adaptation Law: Given an adaptation rate Ts > 0, the estimates σ̂θ1 (t) and σ̂θ2 (t) are updated according to the
following piecewise constant adaptation law:



σ̂θ1 (t)

σ̂θ2 (t)


=



σ̂θ1 (iTs)

σ̂θ2 (iTs)


, t ∈ [iTs, (i + 1)Ts)



σ̂θ1 (iTs)

σ̂θ2 (iTs)


= −



1 0
0 1



[
Bθm Bθum

]−1
Φ
−1
θ (Ts)eAθ

mTs x̃θ (iTs), i = 0, 1, 2, 3, ...,
(24)

where
Φ
−1
θ (Ts) =

(
Aθm

)−1 (
eAθ

mTs − I2
)
,

and x̃θ (t) = x̂θ (t) − xθ (t) is the state prediction error.
Control Law: The control law is generated as the output of the following system:

uθa (s) = −kθaDθ (s)η̂θ (s), (25)

where η̂θ (s) is the Laplace transform of the signal

η̂θ (t) , uθa (t) + η̂θ1 (t) + η̂θ2 (t)

with η̂θ1 (t) = σ̂θ1 (t) and η̂θ2 (s) = H−1
1θ (s)H2θ (s)σ̂θ2 (s) and

H1θ (s) = Cθ
m(sI − Aθm)−1Bθm,

H2θ (s) = Cθ
m(sI − Aθm)−1Bθum.

Here kθa is a feedback gain, and Dθ (s) is a strictly proper transfer function, which together lead to a strictly proper stable

Cθ (s) ,
kθaDθ (s)

1 + kθaDθ (s)

with DC gain Cθ (0) = 1.

3. Horizontal Position Controller
Based on the linearized dynamics in Eq. (18), the horizontal position (xq (t)) controller also employs a PD control

structure which receives horizontal position command xqc (t) from the upper level controller and generates a pitch angle
command θc (t) for the lower level pitch angle tracking controller. The control input θc (t) is given by

θc (t) = K x
p

(
xqc (t) − xq (t)

)
+ K x

dvx (t), (26)

where K x
p and K x

d
∈ R are control gains. The total torque command sent the the system is then

τ(t) = τe + τb (t) + uθa (t),

where τe, τb (t), and uθa (t) are defined in Eqs. (16), (21), and (25) respectively.

D. Vertical Position Controller
The vertical position controller will be designed based on the dynamics in Eq. (19). It contains a baseline PD

controller for the design configuration and an adaptive augmentation to compensate for modeling uncertainty and the
unknown payload.
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1. Baseline Vertical Position Controller
The following baseline force command is defined for vertical position control

Fb (t) = Kz
p

(
zqc (t) − zq (t)

)
+ Kz

d
vz (t), (27)

where Kz
p and Kz

d
∈ R are control gains.

2. L1 Adaptive Augmentation for the Vertical Position Controller
Similar to the design procedure of the adaptive augmentation for the pitch angle controller, we propose the following

adaptive augmentation for the vertical position controller. The equations of vertical motion of the vehicle with the
baseline vertical position control law in Eq. (27) and the L1 adaptive augmentation uz

a (t) can be written as

ẋz (t) = Az
mxz (t) + Bz

r rz (t) + Bz
m

(
uz
a (t) + f z1 (t, xz )

)
+ Bz

um f z2 (t, xz ), xz (0) = xz0,

yz (t) = Cz
mxz (t),

(28)

where xz (t) =
[
zq (t), vz (t)

]>
is the vector of the measured system states, rz (t) = zqc (t) is the reference altitude

command, f z1 (t, xz ) : R×R2 → R is a nonlinear function representing the matched uncertainty, f z2 (t, xz ) : R×R2 → R

is a nonlinear function representing additional modeling uncertainty. Az
m ∈ R

2×2 is a known Hurwitz matrix defining
the desired vertical motion dynamics, Bz

r ∈ R
2×1 is the known command matrix, Bz

m ∈ R
2×1 is the known input matrix,

Cz
m ∈ R

1×2 is a known vector, and Bz
um ∈ R

2×1 is a matrix such that Bz>
m Bz

um = 0 and [Bz
m Bz

um] has full rank. The
product Bz

um f z2 (t, xz ) represents the unmatched uncertainty. The matrices Az
m, Bz

r , and Bz
m are defined as follows

Az
m =



0 1
−B̄51Kz

p B̄51Kz
d


, Bz

r =



0
B̄51Kz

p


, Bz

m =



0
1


,

where B̄51 is the nominal value of the element B51 for the design configuration α = β = π/4 and mp = 0. For the
system given in Eq. (28), the following L1 adaptive controller is proposed.

State Predictor: The state predictor has the same structure as the system in Eq. (28) and is defined by

˙̂xz (t) = Az
m x̂z (t) + Bz

r rz (t) + Bz
m

(
uz
a (t) + σ̂z

1 (t)
)
+ Bz

umσ̂
z
2 (t), x̂z (0) = xz0, (29)

where x̂z (t) is the observer state, σ̂z
1 (t) ∈ R and σ̂z

2 (t) ∈ R are the estimates of the nonlinear function f z1 (·) and f z2 (·)
respectively.

Adaptation Law: Given the same adaptation rate Ts > 0, the estimates σ̂z
1 (t) and σ̂z

2 (t) are updated according to
the following piecewise constant adaptation law:



σ̂z
1 (t)

σ̂z
2 (t)


=



σ̂z
1 (iTs)

σ̂z
2 (iTs)


, t ∈ [iTs, (i + 1)Ts)



σ̂z
1 (iTs)

σ̂z
2 (iTs)


= −



1 0
0 1



[
Bz
m Bz

um

]−1
Φ
−1
z (Ts)eAz

mTs x̃z (iTs), i = 0, 1, 2, 3, ...,
(30)

where
Φ
−1
z (Ts) =

(
Az
m

)−1 (
eAz

mTs − I2
)
,

and x̃z (t) = x̂z (t) − xz (t) is the state prediction error.
Control Law: The control law is generated as the output of the following system:

uz
a (s) = −kz

aDz (s)η̂z (s), (31)

where η̂z (s) is the Laplace transform of the signal

η̂z (t) , uz
a (t) + η̂z1 (t) + η̂z2 (t)
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with η̂z1 (t) = σ̂z
1 (t) and η̂z2 (s) = H−1

1z (s)H2z (s)σ̂z
2 (s) and

H1z (s) = Cz
m(sI − Az

m)−1Bz
m,

H2z (s) = Cz
m(sI − Az

m)−1Bz
um.

Here kz
a is a feedback gain, and Dz (s) is a strictly proper transfer function, which together lead to a strictly proper stable

Cz (s) ,
kz
aDz (s)

1 + kz
aDz (s)

with DC gain Cz (0) = 1. The total force command sent to the system is then

F (t) = Fe + Fb (t) + uz
a (t),

with Fe, Fb (t), and uz
a (t) defined in Eqs. (16), (27), and (31) respectively.

IV. Simulations

A. Model Parameters
The parameters used in simulations are shown in Table 1. These parameters are based on a vehicle similar to the

one, discussed in our previous work [5], and interested readers can find more details therein. The payload is assumed to
be a cylinder.

Table 1 Vehicle parameters

m1 380 g
m2 10.1 g
m3 29.9 g
l1 100 mm
lc1 43.5 mm
l2 130 mm
lc2 67.8 mm
Iyy1 2.70×10−2 kgm2

Iyy2 2.87×10−5 kgm2

Iyy3 1.89×10−4 kgm2

B. Simulation Results

1. Pitch Angle Controller
Step responses of the baseline pitch angle controller are shown in Fig. 6. Figure 6a shows the step responses at the

design configuration with α = β = π/4. Figure 6b shows step responses of the baseline controller for a few different
configurations. Since the mass of the arm is small, the configuration does not have a large effect on the dynamics, and
hence similar performance is achieved. However, when there is a payload, the configuration will affect the influence of
the payload on system dynamics, which will be shown in the following results.

When there is a payload, the dynamics of the system will change greatly. Step responses with different configurations
are shown in Fig. 7. Figure 7a shows the response to a step command at time t = 0 s, while Fig. 7b shows the response
to a step command at t = 2 s. The payload affects the performance of the baseline control law greatly. The payload
caused the pitch angle to decrease at first. Then the pitch angle increased and settled to a value much smaller than the
commanded value. With the adaptive augmentation, the influence of the payload was compensated for successfully, and
the pitch angle converged to the commanded value; the performance for the design configuration was recovered. The
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plot with the adaptive augmentation off also reveals the effect of the manipulator configurations. When α is larger, the
payload is farther from the center of mass of the quadrotor, and hence a larger pitching moment will be generated by the
payload, which increases the magnitude of the uncertainty. Without adaptive augmentation, the baseline control law
cannot compensate for this disturbance. The payload picked up will cause the vehicle to tilt and hence fly forward. This
should be avoided especially when the vehicle is picking up an item in front of a shelf or close to a wall. With adaptive
augmentation, this problem can be solved.
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Fig. 6 Step responses of the baseline pitch angle controller at different configurations
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(b) Step command at t = 2 s

Fig. 7 Step responses with payload at various configurations

2. Position Controllers
Step responses of the horizontal and the vertical position tracking controllers are shown in Fig. 8 and Fig. 9. Figure 8

shows the step response to the horizontal position command and the vertical position command respectively. Figure 9
shows the results, when there is a payload. The payload will affect both the horizontal and the vertical motion. It reduces
the performance of both baseline position control laws. After the payload is picked up by the vehicle, the altitude of the
vehicle will decrease, and the vehicle will move forward, which can be seen from Fig. 9b. The adaptive augmentation
can compensate for this disturbance, and the vehicle moves according to the commands. This is important to achieve a
safe and stable pick-and-place mission.
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(a) Step response to xq command
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(b) Step response to zq command

Fig. 8 Step responses to position commands at design configuration without payload

(a) Step command at t = 0 s (b) Step command at t = 2 s

Fig. 9 Step responses to position commands at different configurations with payload
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In the following study, payload drop-off is simulated. Comparison is made between the performance with and
without adaptive augmentations. Here only the configuration α = β = π/4 is explored. Other configurations have
similar results. A payload of mass mp = 30 g was added to the manipulator at time zero, and then dropped off at
time t = 8 s. The commanded positions are both zero in the horizontal and the vertical directions. Simulation results
are shown in Fig. 10. Plots in Fig. 10a indicate that for the baseline control law, when the payload was dropped, the
horizontal and vertical positions again underwent large changes. These changes are not desirable for the pick-and-place
mission, especially when the vehicle is close to human users. With adaptive augmentations, the changes before and
after the drop-off are much smaller, as shown in Fig. 10b. This behavior contributes to a more friendly human robot
interaction.

(a) Comparison of responses with L1 on and off

0 2 4 6 8 10 12 14 16
-0.1

-0.05

0

0.05

0.1

L
1
 On

0 2 4 6 8 10 12 14 16
-0.1

-0.05

0

0.05

0.1

0 2 4 6 8 10 12 14 16

time [s]

-0.5

0

0.5

(b) Responses with L1 on

Fig. 10 Responses with a payload picked up at t = 0 s and dropped off at t = 8 s

V. Conclusion
This paper presented a control design for an aerial manipulator to facilitate the pick-and-place mission. The model

of the vehicle was obtained using Lagrangian dynamics, which was then analyzed and linearized for control design
purposes. A baseline pitch angle controller, a horizontal position controller, and a baseline vertical position controller
have been developed using a PD control structure. Two L1 adaptive controllers were designed to augment the baseline
pitch angle controller and the baseline vertical position controller to compensate for the influence of the payload picked
up. Simulation examples verified the efficacy of the design. With an unknown payload, control performance for the
design configuration without any payload can be recovered, which is critical to ensure that the vehicle will not deviate
from the commanded positions after it picks up and drops off the payload. Future work will be conducted on the
implementation of the proposed design on a real system and further flight test.

Appendix
The matrices M (q̄), C(q̄, ˙̄q), and G(q̄) are defined as follows
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